Skip to Content
PlatformPerformance Optimization

Performance Optimization

Learn how to optimize your feature flag implementation for maximum performance and minimal latency.

Overview

DarkFeature is built for high-performance applications. Our edge-first architecture ensures that feature flag evaluations happen as close to your users as possible, with sub-millisecond response times globally.

Performance Features

Edge Computing

  • Global Edge Network: Feature flags are cached at 200+ edge locations worldwide
  • Sub-10ms Latency: Average response time under 10ms globally
  • 99.99% Uptime: Enterprise-grade reliability with automatic failover

SDK Performance

Client-Side SDKs

  • Lazy Loading: Only fetch flags when needed
  • Local Caching: Intelligent caching with automatic updates
  • Streaming Updates: Real-time flag changes via WebSocket connections
  • Bundle Size: Minimal impact on your application bundle (< 15KB gzipped)

Server-Side SDKs

  • Connection Pooling: Efficient HTTP connection reuse
  • Bulk Operations: Evaluate multiple flags in a single request
  • Background Updates: Non-blocking flag synchronization
  • Memory Optimization: Efficient in-memory flag storage

Caching Strategy

Multi-Layer Caching

  1. Browser Cache: Client-side caching for instant evaluations
  2. CDN Cache: Global CDN for reduced latency
  3. Application Cache: Server-side caching for high-throughput scenarios
  4. Database Cache: Optimized data layer for complex targeting

Cache Invalidation

  • Smart Invalidation: Only invalidate affected flags
  • Gradual Rollout: Prevent cache stampedes during updates
  • TTL Management: Configurable time-to-live settings

Performance Best Practices

Implementation Guidelines

1. Use Appropriate SDK Methods

// ✅ Good: Use async for better performance const isEnabled = await client.isEnabled('feature-flag') // ❌ Avoid: Synchronous calls can block execution const isEnabled = client.isEnabledSync('feature-flag')

2. Batch Flag Evaluations

// ✅ Good: Evaluate multiple flags at once const flags = await client.getAllFlags() // ❌ Avoid: Multiple individual calls const flag1 = await client.isEnabled('flag-1') const flag2 = await client.isEnabled('flag-2')

3. Implement Local Fallbacks

// ✅ Good: Provide fallback values const isEnabled = await client.isEnabled('feature-flag', false) // ✅ Good: Handle network failures gracefully try { const isEnabled = await client.isEnabled('feature-flag') } catch (error) { // Use local fallback or default behavior const isEnabled = false }

Targeting Optimization

1. Efficient Targeting Rules

  • Simple Rules First: Order targeting rules by complexity
  • User Segments: Pre-compute user segments when possible
  • Avoid Complex Expressions: Keep targeting logic simple

2. User Context Optimization

// ✅ Good: Provide stable user context const context = { userId: user.id, tier: user.subscription.tier, region: user.location.region, } // ❌ Avoid: Frequently changing context const context = { userId: user.id, timestamp: Date.now(), // This changes every evaluation! randomValue: Math.random(), }

Monitoring Performance

Key Metrics to Track

Response Time Metrics

  • Flag Evaluation Time: Time to evaluate a single flag
  • Bulk Evaluation Time: Time to evaluate multiple flags
  • Network Latency: Time for SDK to communicate with DarkFeature
  • Cache Hit Rate: Percentage of evaluations served from cache

Application Impact

  • Bundle Size Impact: Additional JavaScript bundle size
  • Memory Usage: RAM consumption by the SDK
  • CPU Usage: Computational overhead of flag evaluations
  • Network Requests: Number of requests to DarkFeature APIs

Performance Dashboard

Access real-time performance metrics in your DarkFeature dashboard:

  1. Response Times: P50, P95, P99 latencies globally
  2. Cache Performance: Hit rates and invalidation patterns
  3. SDK Performance: Client and server-side performance metrics
  4. Error Rates: Failed evaluations and fallback usage

Troubleshooting Performance Issues

Common Performance Problems

1. High Latency

Symptoms: Slow flag evaluations, user experience impact Solutions:

  • Enable local caching in SDK configuration
  • Use bulk evaluation methods
  • Implement proper fallback strategies
  • Check network connectivity

2. Memory Leaks

Symptoms: Increasing memory usage over time Solutions:

  • Properly dispose of SDK instances
  • Avoid creating multiple SDK instances
  • Use SDK connection pooling

3. Bundle Size Issues

Symptoms: Large JavaScript bundle size Solutions:

  • Use tree-shaking compatible imports
  • Consider server-side evaluation for heavy applications
  • Use dynamic imports for feature-specific code

Performance Testing

Load Testing

// Example load test for flag evaluations const clients = Array.from({ length: 100 }, () => new DarkFeatureClient()) const startTime = Date.now() const promises = clients.map(client => client.isEnabled('high-traffic-flag')) await Promise.all(promises) const endTime = Date.now() console.log(`100 concurrent evaluations took ${endTime - startTime}ms`)

Benchmark Testing

// Benchmark flag evaluation performance async function benchmarkEvaluations() { const iterations = 10000 const startTime = performance.now() for (let i = 0; i < iterations; i++) { await client.isEnabled('benchmark-flag') } const endTime = performance.now() const avgTime = (endTime - startTime) / iterations console.log(`Average evaluation time: ${avgTime.toFixed(3)}ms`) }

Advanced Performance Features

Enterprise Performance Features

1. Dedicated Infrastructure

  • Private Edge Locations: Dedicated edge nodes for enterprise customers
  • Custom Caching Rules: Tailored caching strategies
  • Performance SLAs: Guaranteed performance levels

2. Advanced SDK Features

  • Streaming Connections: Persistent connections for real-time updates
  • Predictive Caching: ML-powered cache warming
  • Geographic Optimization: Region-specific performance tuning

Integration with Monitoring Tools

Application Performance Monitoring (APM)

// Integration with popular APM tools import { trace } from '@opentelemetry/api' const tracer = trace.getTracer('darkfeature-client') const span = tracer.startSpan('feature-flag-evaluation') const isEnabled = await client.isEnabled('feature-flag') span.setAttributes({ 'flag.key': 'feature-flag', 'flag.enabled': isEnabled, }) span.end()

Custom Metrics

// Send custom performance metrics client.on('evaluation', event => { // Send to your metrics system metrics.timing('flag.evaluation.duration', event.duration) metrics.increment('flag.evaluation.count') })

Getting Help

If you’re experiencing performance issues:

  1. Check Status Page: Visit status.darkfeature.com
  2. Review Logs: Enable debug logging in your SDK
  3. Contact Support: Reach out to our performance engineering team
  4. Community: Join our Discord community for help

For enterprise customers, our performance engineering team can provide:

  • Custom performance audits
  • Optimization recommendations
  • Load testing assistance
  • Architecture reviews
Last updated on